Use the Numbers Regex Python Validator to accurately test patterns for integers, decimals, and formatted numbers in Python. Whether you’re validating user input or cleaning datasets, this tool helps ensure numerical values follow the correct structure. For more Python-specific regex tools, explore our Python Email Regex Validator, Python IP Address Regex Validator, or experiment freely with patterns in our Python Regex Tester.
[A-Z]
: uppercase letters[a-z]
: lowercase letters[0-9]
: digits\.
: a literal dot+
: one or more of the preceding*
: zero or more of the preceding?
: optional (zero or one)^
: start of string$
: end of string
Test your APIs today!
Write in plain English — Qodex turns it into secure, ready-to-run tests.
Regular Expression - Documentation
What is the Numbers Regex Python Validator?
The Numbers Regex Python Validator is a tool designed to help developers test regular expressions for numeric values, including:
Whole numbers (integers)
Decimal numbers
Comma-formatted values like 1,000
It uses Python’s re module and is ideal for applications that require data validation, such as form handling, data analysis, and backend validation systems.
Common Patterns for Number Validation
Integer Validation
Regex:
^\d+$
Validates a string containing only digits.
Matches: 12345
Does not match: 123a, 12.34
Decimal Number Validation
Regex:
^\d+\.\d+$
Validates a string with digits before and after a decimal point.
Matches: 45.67
Does not match: .45, 45.
Comma-Formatted Number Validation
Regex:
^\d{1,3}(,\d{3})*$
Validates numbers like 1,000 or 12,000,000.
Matches: 1,000, 100,000
Does not match: 10,00, 1,00,000
Python Code Example
Use the Python Regex Tester to try variations.
Use Cases
Form Input Validation: Ensure numeric-only input for fields like age, quantity, or price.
Data Cleaning in Python Scripts: Filter out invalid numerical formats during preprocessing.
File/Data Imports: Validate numbers during CSV or Excel file processing.
Financial Apps: Match only correctly formatted numbers in calculations or reporting.
For related Python validators, check out:
Categorized Metacharacters for Number Regex
\d
: Matches any digit (0–9)\D
: Matches any non-digit character^
: Anchors the match at the start of the string$
: Anchors the match at the end of the string+
: Matches one or more of the preceding element*
: Matches zero or more of the preceding element\.
: Escapes the dot to match a literal decimal point,
: Matches comma when used in formatted numbers()
: Groups multiple tokens together
Pro Tips
Use fullmatch() in Python to ensure the entire string conforms to the pattern.
For decimals that accept optional digits after the point, use: ^\d+(\.\d+)?$
When validating thousands separators, ensure locale consistency (e.g., comma in US, dot in EU).
Use raw string literals in Python (r'^\d+$') to avoid escaping issues.
Explore related tools: